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Order picking is the core of warehouse operations and considerable researches have been conducted on improving its
efficiency. In this paper, we aim at the joint optimisation of order batching and picker routing based on a famous and typical
online retailer of China, which mainly focuses on fast-moving consumer goods. An integer programming is formulated to
minimise the total travelling distance involving with order batching and picker routing. In the stage of order batching, an
effective batching procedure based on similarity coefficient which is measured by overlapping channels between orders is
proposed. In the stage of picker routing, an improved ant colony optimisation algorithm with local search is proposed. Based
on those simulated orders generated by actual transaction data, numerical experiments are conducted to verify the performance
of the algorithm we proposed. Results show that the proposed joint optimisation algorithm has potential advantages under
various order sizes and order structures, which implies that it is effective and efficient particularly in the online retailing of
fast-moving consumer goods.
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1. Introduction

The rapid development of B2C electronic commerce draws public attraction on efficiency of warehouse operations. As the
core of warehouse operations, order picking determines performance of warehouse operations in terms of both cost and
responsiveness. Order picking is dealing with the retrieval of stock keeping units (SKUs) from their storage locations to
satisfy a given demand specified by one or more customer orders. These SKUs are then sent to the sorting process for shipment
of each order. Generally speaking, order picking accounts for about 60% of total labour cost in warehouse, while 90% of
picking time is spent on travelling. Therefore, considerable researches have been focusing on improving the performance of
warehouse operations by improving the efficiency of order picking, such as the minimisation of response time and travelling
distance. There are numerous factors affecting the efficiency of order picking and some of key factors are warehouse design,
storage location allocation and picking policy.

As for order picking, warehouse design mainly refers to the design of picking system. If a picker travels to storage location
to pick SKUs, the system is defined as a ‘picker-to-part’ system. If SKUs are brought to pickers, which means there is no
interface between storage position and pickers, the system is defined as a ‘part-to-picker’ system. ‘Part-to-picker’ system is
relatively new and has been widely used in practice in United States. One of ‘part-to-picker’ systems is automated storage
and retrieval system (AS/RS). Generally, an AS/RS consists of racks served by cranes running through aisles between the
racks. An extensive literature review of AS/RSs has been presented in Roodbergen and Vis (2009) discussing different types
of AS/RSs including single unit-load aisle-captive AS/RS, mini-load AS/RS. The mini-load AS/RSs are very common in
warehouse of online retailers where pickers could take the required amount of units from the bins and then the AS/RS moves
the remainder of the load back into the storage rack (SR). Therefore, the mini-load AS/RSs have received much attention
(see Vasili et al. 2008; Lerher, Šraml, and Potrč 2011; Lerher, Edl, and Rosi 2014). Mostly, a AS/RS is single-deep, which
means it is a two-dimensional (2D) system. Recently, to improve order picking efficiency and to save floor space, multi-deep
(or three-dimensional (3D)) storage systems have been introduced on the market (Yu and de Koster 2012). For instance, a
new system based on AS/RS, called vertical lift modules (VLMs) is being concentrated on, where insertion/extraction device
is travelling vertically and extracts trays from the shelves and brings them to the operator putting it on pick shelf (or pick
window). Due to their high efficiency, VLMs of both single-tray and double-tray have received attention (see Dukic, Opetuk,
and Lerher 2015; Rosi et al. 2016).
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Beside AS/RS, another automated system that belongs to ‘part-to-picker’ is very important as well: shuttle-based storage
and retrieval system (SBS/RS). SBS/RSs are designed to meet the demand of faster delivery time, smaller order size and
larger product variety (Lerher, Ekren, Sari et al. 2015). The SBS/RS is composed of multiple parallel aisles of SRs, elevator
(or lift) intended for each aisle of the SR, tier-captive shuttle carriers, input and output location, buffer position in each tier
and roller conveyors (Lerher, Ekren, Dukic et al. 2015). Compared to mini-load AS/RS, SBS/RS brings high-throughput
capacity, while its capital and maintenance costs are relatively high (Lerher 2015). Therefore, more researches about SBS/RS
need to be done to make it more accessible.

However, automated system is not so popular in China due to its high investment cost. Warehouses of most online retailers
prefer to adapt ‘picker-to-part’ system. Therefore, improving efficiency of pickers draws much importance. In the three key
factors that affecting performance of order picking mentioned above, warehouse design and storage location allocation are
difficult to be changed once a warehouse starts to operate. Hence, we try to optimise order picking process instead. One of
the picking strategies used in practice of electronic commerce is the order batching policy, to allocate a set of orders into
several subsets named order batch. Picking of an order batch is usually finished by a single picker. From the perspective of
optimisation, a complete order batching and picking policy is composed of two aspects: how to choose appropriate orders to
form a batch (referred as order batching in the following sections for convenience) and how to find the best picking sequence
for an order batch which means picker routing.

The order batching strategy is not only a short-term and operational decision, but also a long-term and strategic one
because it involves both operating process (e.g. routing for order pickers) and strategic decision such as warehouse layout,
see Rouwenhorst et al. (2000). The objective of the order batching strategy is to minimise the picking route distance in a
manual sorting system particularly (see Gademann and Velde 2005). In a multi-block warehouse, SKUs in a batch can be
picked either by several workers in distinct blocks at one time (Lambert, Stock, and Ellram 1998) or by a single picker
crossing different zones. The batch size is a critical factor determining the picking efficiency, and usually it can be decided by
the expected batch processing time according to Petersen (2000). However, in practice, the batch size will be constrained by
the capacity of retrieval vehicles. Order batching problem has been proved as a NP-hard problem and many researchers aim
on exploring more effective heuristic solutions. For instance, Chen and Wu (2005) use clustering algorithm for two-binary
integer programming to batch orders to maximise similarity of orders in a batch. Some other scholars consider a ‘seed order
heuristic’. For each batch, one order is chosen as a seed order to be compared with other orders. Seed order can be chosen
by different rules such as the order with most SKUs by de Koster, van der Pooft, and Wolters (1999). And this seed order
heuristic is also used in batching picking in a warehouse with double aisles by Ho, Su, and Shi (2008).

The essence of picker routing problem is a travelling salesman problem (TSP) which has been shown to be NP-hard, and
many effective algorithms have been adapted to solve TSP. However, warehouse layout must be taken into consideration
when designing heuristics to construct a picking route because it could decide whether the TSP to be solved is symmetric
or asymmetric. For example, a warehouse with two depots could lead to a asymmetric TSP (Gharehgozli, Yu et al. 2014).
Considering a traditional warehouse layout without any middle aisle, Goetschalckx and Donald Ratliff (1988) shows that
traversal policy, return policy and other improved heuristics based on these two policies are applicable. While in a multi-block
warehouse with several blocks separated by aisles or a double-block warehouse with only one middle aisle, Roodbergen and
de Koster (2001a) has shown that warehouse with one middle aisle can have a significant shorter routing distance than that of
those warehouses without aisles. Furthermore, Vaughan (1999) finds that the layout with middle aisles impacts the flexibility
and efficiency of order picking. Roodbergen and de Koster (2001b) compares the average time of order picking and finds
that the double-block warehouse layout is preferred. The S-shape heuristic is tested to be effective and feasible for practical
use by Le-Duc and de Koster (2007).

Some related and similar works in other industries could also be referred such as optimisation of operations in a container
block which could be regard as a warehouse. In this case, scheduling of cranes has large impact on the efficiency and many
existing studies about it could be found (see Gharehgozli et al. 2014, 2014a, 2014b). An other case is batching problem
in steel-making industry, which is more complicated in some extent because optimal sequence in a batch also needs to be
decided (e.g. Tang and Wang 2008; Wang and Tang 2008).

To the best of our knowledge, most existing literatures focus on a single process in order picking, and joint optimisation
receives few attention. The main reason might be that it is difficult enough to solve order batching or picker routing,
respectively, since either problem has been proved as NP-hard. For order batching, decision-makers often faces multiple
goals in designing batching policy, such as shorter picking distance, higher utilisation of retrieval vehicle and less order
holding time. The problem is, in most cases these goals cannot be achieved at the same time. Therefore, finding a balance to
improve performance of the whole warehouse operation is critical and not easy as well. As for picker routing which could
be regarded as TSP, numerous works about it have been presented and it still has been solved perfectly. The main difficulty
is that most exact algorithms could not solve the problem in a reasonable time when problem size becomes large, while
heuristics and intelligent optimisation algorithms are even unable to find the optimal solution every time. Hence, either order
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batching or picker routing is hard to find an optimal solution. As a result, it will be even harder to solve both problems at the
same time.

However, the order batching and picker routing policy is highly interrelated in warehouse operations. In addition, an
important fact of online retailers in China is that most work in warehouse operations is finished by manpower due to low labour
cost. Certain online retailers even employ amount of temporary workers to deal with heavy work induced by promotion.
Usually, workers decide a picking route based on their own experience, which is inefficient for most of the time. Situation
turns worse when it comes to temporary workers. As warehouse management system (WMS) is becoming a common tool
for application, order picking can be optimised to significantly minimise workers’ individual difference.

Won and Olafsson (2005) design two heuristics to solve order batching and picker routing jointly and minimise both
order holding time and order picking time. However, only 2-opt heuristic is adapted for routing in this research. Tsai, Liou,
and Huang (2008) design a multiple-GA method to solve the same problem and receive better performance. In this study,
order batching and picker routing are solved by two different genetic algorithms (GA). One of the limitation is that it might
fail to make full use of capacity of retrieval vehicle in batching process. Besides, GA does not perform well in picker routing
compared to other intelligent algorithms. Recently, some researches of related problems mainly focus on designing a better
intelligence algorithm, especially for order batching, to minimise the total routing distance. For instance, Kulak, Sahin,
and Taner (2012) design a cluster-based tabu search algorithm, Chen et al. (2015) propose a hybrid-coded GA and Cheng
et al. (2015) present a hybrid algorithm incorporates particle swarm optimisation and ant colony optimisation. These new
algorithms may be able to acquire a better solution, but they also induce a longer computation time when constructing order
batches, which is unrealistic for application. All of these motivate us to propose a more efficient solution on joint optimisation
of order batching and picker routing under consideration of practical use, particularly in the online retailers’ warehouse in
China which mainly focus on fast-moving consumer goods.

In this paper, we examine a joint optimisation of order batching and picker routing policy by formulating an integer
programming mainly to minimise the total picking distance, and then an effective heuristic solution is presented. We mainly
consider to minimise the picking distance for the reason that less time spent on picking could also reduce holding time of
other orders. Additionally, order waiting time is taken under consideration in the algorithm proposed in this paper. Besides
the performance of heuristics, we consider the practical applicability in designing the heuristic solution as well. Our research
is based on investigation in Yihaodian, a well-known Chinese B2C online retailer focusing on fast-moving consumer goods
(FMCG) at first and now other categories as well.

The main contribution of this paper is: (1) optimisation of warehouse operations is divided into three specific aspects
for further research; (2) an integer formulation considering practical situation is given; (3) we design an effective algorithm
to batch orders and construct a picking route to minimise total picking cost. To be specific, we batch orders to maximise
similarity of orders in the one order batch where similarity refers to that orders in the batch demand SKUs stored at near
location. Besides, we combine two local search processes with ant colony optimisation to improve the result of picker routing;
(4) a procedure to effectively simulate orders based on historic selling data is given; (5) the algorithm is proved to be effective
than other algorithms and practical under various situations.

The rest of the paper is organised as follows. In Section 2, detailed description of this problem and related background
is presented. Section 3 first introduces some method to simplify the practical problem for convenience of research, and then
proposes an integer formulation of order batching and picking. In Section 4, a heuristic of order batching and picker routing
is prescribed. Section 5 gives a numerical example based on real transaction data to compare the efficiency of the heuristic
proposed and traditional routing policy in practice. Lastly, Section 6 concludes main works in the paper and suggests several
potential research directions.

2. Problem description

As a cruel fact, profiting from China is difficult for most online retailers, which forces them to reduce cost in every aspect.
As a major part in daily warehouse operations, order picking has attracted considerable attention on improving efficiency.
Thus far, the ‘picker-to-part’ system is widely used in practice, and in a ‘picker-to-part’ system, order picking generally can
be optimised in the four following ways:

• Warehouse layout: The optimisation of warehouse layout is to arrange different items into warehouse for efficient
and cost-effective operation. Once the layout is decided, it will bring high cost to re-layout.

• Position allocation:Allocating SKUs to storage locations tends to find the best assignment to reduce the total picking
distance. For instance, SKUs with high outbound frequency should be placed in the nearest positions. Besides, storage
requirements for certain SKUs must be taken into consideration.
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Figure 1. Effect of order batching and picker routing on warehouse operations.

• Order batching: A picking tour usually fulfils an order batch, containing several or more orders. This is a useful
strategy to improve efficiency. The problem is to identify the best group of orders to form an order batch. In addition,
order batching is a trade-off between cost and waiting time for consumers.

• Picker routing: Finding the shortest route to pick all demanded SKUs has received extensive attention. This problem
can be transferred to a TSP. For a traditional warehouse layout, distance usually is described using rectilinear distance
because it is close to practical situation.

For an online retailer which has operated for several years, the warehouse layout has been decided and it may induce very
high cost to change the layout. Although the position allocation is made considering various factors, e.g. storage condition
and storage by categories, such allocation strategy will not be pursued here. Therefore, the retailer will try to reduce the
picking cost by optimising order batching and order picking routes. In this paper, a joint optimisation of these two parts is
considered because order batching and order picking routes have internal relation and each aspect affects the final outcome.

Figure 1 shows the effect of order batching and picker routing on warehouse operations. The solid circle refers to order
batching and the other one represents the picker routing. It indicates that these two aspects cover most work in order fulfilment,
and this is the underlying reason that the paper concentrates on the investigation of this problem.

The following assumptions are made based on practice to simplify the problem:

(a) The distance between any two positions is known for a given warehouse layout, and it is measured by the rectilinear
distance.

(b) Both the horizontal speed and vertical speed of the picker is constant and known.
(c) One order cannot be split into multiple batches, which indicates that the capacity of a retrieval vehicle is enough to

satisfy at least one order.
(d) Order picking starts and ends in the sorting area. Usually only one sorting area exists in a warehouse.
(e) The same SKUs stored at different positions (i.e. more than one position) will be regarded as different SKUs.

For assumption (a), in practice, aisle and channel might be crowded sometimes and therefore the picker is forced to find
another path which is not the shortest. This condition will not be extended in this paper and rectilinear distance between any
two positions is set to be the shortest one. Assumption (b) is to support the translation of the vertical distance to the horizontal
distance given in the next section. Assumption (d) is for convenience of management and it is common in practice.

3. Joint optimisation formulation

For a modern multi-block stereoscopic warehouse, the storage location of a SKU can be determined in terms of block, row,
column, level, bay and position. In practice, each rack is divided into several bays, each of which contains several positions.
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Figure 2. A typical warehouse layout.

Table 1. Notation of parameters in the formulation of joint optimisation problem.

Notation Description

F Number of levels in a SR, indexed by f
H Height between two adjacent levels in a SR
v Constant horizontal speed of the retrieval vehicle
h Constant vertical speed of the retrieval vehicle
ω Transferred coefficient where ω = v/h
m, n Index for a storage location
cmn Rectilinear distance between location m and n
P Number of SKUs, indexed by p and q
cpq Rectilinear distance between the SKU p and q
vp Unit size of the SKU p
I Number of orders, indexed by i and j
Si j Similarity coefficient between the order i and j
V Storage capacity of the retrieval vehicle (in units)
Oip Quantity of the SKU p demanded by the order i
Gi Set of SKUs demanded by order i
K Number of order batches, indexed by k
Gk Set of SKUs demanded by the batch k
Aip Channel at where the SKU p in the order i locates
Ai Set of Channels where SKUs in the order i locate

For instance, A02-14-08-03-06 refers to position 06 on the third level of bay 08 located in row 02, column 14 in block A.
A row and a column can locate a rack while a bay and a position can locate a SKU in the rack. To make it clear, we define
the aisle between rows as corridor and aisle between columns as channel. Figure 2 shows a typical layout of a double-block
warehouse.

The aforementioned configuration of code for storage locations can improve efficiency and avoid mistakes in daily
operations, which makes it prevalent in practice. However, it is unnecessary in research. Therefore, to reduce the complexity
of the problem, we further simply the definition to an one-dimensional (1D) code by the following procedure:

Step 3.1: Encode each position by an unique code.
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Step 3.2: For storage positions at the same planar location but in different levels, transfer the vertical picking distance
into a horizontal picking distance using a transferred coefficient ω = v/h, where v and h are the horizontal and
vertical speed of the retrieval vehicle, respectively.

Let F denote the number of levels (indexed by f ), and H is the height between two adjacent levels in a rack. In practice,
the medium level is usually comfortable for picking from the perspective of the total picking distance. We define the medium
level to be the basic level. Thus, the vertical picking distance of the level f can be transferred into a horizontal picking
distance by:

transferred horizontal distance of the level f = ωH

∣∣∣∣ f − F

2

∣∣∣∣ (1)

In this way, the picking distance between the storage location n and m, denoted by cmn , can be evaluated by summing
the horizontal distance and the transferred horizontal distance. To clarify the discussion, parameters and their definitions are
presented in Table 1.

In stage of picking, a picker is given SKUs needed to be retrieved while distance discussed above is between two locations.
Therefore, it would be more intuitionistic if distance between any two SKUs is calculated. Once decision of storage location
allocation is known, the rectilinear distance between the SKU p and q is given by:

cpq = cmn ∀p(q) ∈ P stored in the storage location m(n) (2)

Note that distance between any two nodes is assumed to be symmetric in this paper, which means cpq = cqp for any p and
q .

In the joint optimisation of both order batching and picker routing, we aim to identify the optimal order batching policy
and the optimal picking routes. The order batching policy indicates the total number of order batches K (indexed by k) and
the allocation of orders to batch k, which is defined by Equation (3). The optimal picking route indicates the visiting sequence
the SKU p and q , denoted by yk

pq , which is defined by Equation (4).

xk
i =

{
1 order i is allocated in batch k

0 otherwise.
(3)

yk
pq =

{
1 The SKU q is picked just after the SKU q during the picking of batch k

0 otherwise.
(4)

Therefore, the joint optimisation of order batching and picker routing can be formulated by an integer program which is
given by:

min
∑
k∈K

∑
p∈Gk

∑
q∈Gk

cpq yk
pq (5)

s.t.
∑
k∈K

xk
i = 1 ∀i ∈ I (6)

∑
i∈I

∑
p∈P

xk
i Oipvp ≤ V ∀k ∈ K (7)

Gk =
⋃

i∈I
xk

i Gi ∀k ∈ K (8)∑
p∈Gk

yk
pq = 1 ∀k ∈ K ,∀q ∈ Gk (9)

∑
q∈Gk

yk
pq = 1 ∀k ∈ K ,∀p ∈ Gk (10)

∑
p∈D,q �∈D

yk
pq ≥ 1 ∀k ∈ K , D is any subset of SKUs set in batch k (11)

xk
i , yk

pq = 0 or 1 (12)

The objective function (5) is to minimise the total routing distance in the order picking. By assuming a constant velocity
of the retrieval vehicle, picking distance could be transferred into picking time. In other words, minimising total distance
equals minimising total picking time. This assumption is common in existing research such as Won and Olafsson (2005) and
Tsai, Liou, and Huang (2008). The constraint (6) ensures that each order can only be allocated in one single order batch,
and K ≤ I . Constraint (7) limits that total number of orders in a batch cannot exceed the capacity of the retrieval vehicle.
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The constraint (8) calculates the SKU set in an order batch. The constraint (9)–(11) are typical constraints in TSP ensuring
the solution is a Hamilton cycle. Constraint (9) and (10) ensures the uniqueness of picking route. Specifically, constraint (9)
means that only one SKU could be arranged to be picked just before picking SKU q . Constraint (10) ensures that any SKU
p, the picker could only go to pick one SKU right after picking SKU p. Finally, constraint (11) ensures a complete picking
route, avoiding the situation where a subset of SKUs to be picked forms a circle and other SKUs are not put in the route.

The problem could be simplified into a traditional order routing problem if we only consider decision variable yk
pq and

delete constraint (6)–(8). However, the problem could not be simplified into an order batching problem easily because the
objective must be changed when only batching is considered, but constraint (6) and (7) are still two necessary constraints
order batching problem. Actually, constraint (8) acts as a link to connect order batching and order routing by finding SKUs
set in a given order batch so that picking route for the batch could be decided.

To show the complexity of the problem, consider the case where routing is not considered. Then the problem is simplified
to order batching, which has been proved as an NP-hard problem (Gademann, van den Berg, and van der Hoff 2001; Gademann
and Velde 2005). On the other hand, in the case without order batching, it is actually a TSP as mentioned above and it has
been proved to be an NP-hard problem as well. Therefore, as a more complicated one, joint optimisation of order batching
and picking is NP-hard as well.

The model could be extended to be more realistic in several directions. The first one is to consider order waiting time in
batching process. To be specific, an order cannot be held in system for too long, otherwise it will affect customer satisfaction.
Therefore, the objective function could be modified to be a multi-objective optimisation problem. The second one is to allow
the routing problem to be asymmetric because distance between two nodes could be different due to congestion. In practice,
there will be many pickers in the warehouse at the same time, making pickers unable to choose the shortest route every time.
In this case, the distance will be asymmetric.

4. Heuristic solution

In this section, we purpose a heuristic solution approach to jointly optimise order batching and picker routing. The retailer
makes decisions to minimise order picking cost after the actual content of orders is observed. Once a number of orders are
realised, the retailer batches these orders and compute picking route for each batch to minimise the picking distance or time.
Both sets of decisions will affect the cost induced by order picking. Storage location allocation is assumed to be decided and
the retailer seeks to save transportation cost in fulfilling orders in an efficient way. When customers place their orders, the
retailer aims to prepare the SKUs for shipment in the shortest time, which mostly depends on the efficiency of picking. Two
approaches will be used in this stage: order batching and picking route computation.

It is called order batching that grouping orders into a number of sets, each of which can be finished by a single picking
tour. This is a common strategy in practice. A batch is composed based on different criterion, such as capacity of picking
equipment and expected waiting time of an order. Usually, a set of orders that in sequence of arriving time will be grouped
in a batch, which means first in first out (FIFO) principle. However, batches composed in this way may require long picking
time due to stochastic demand of orders. In other words, orders in a batch using FIFO principle have few similarities from
the perspective of picking. Such effect is much more significant in FMCG. Hence, in this section, we discuss how to generate
orders considering optimisation effect and practicability. Besides, for a given order batch (or a given sets of demand SKUs),
the picker has multiple choices of picking sequence which affects efficiency. Therefore routing algorithm will be discussed
in this section as well.

It is easy to recognise that generating similar orders is a feasible method. The point is the measurement of similarity.
Considering the fact that moving from a channel to another usually takes more travelling time, we batch orders that demand
SKUs in similar channels. On one hand, an order that demands SKUs in one channel can be fulfilled easily with other orders
which will visit the same channels. On the other hand, for an order that demands SKUs in wide apart channels, batching
more orders makes long tour between channels and more worthy.

Note that for p ∈ Gi , Aip is the channel where SKU p located. Ai is set of channels involved in order i , which means
Ai = ⋃

p∈Gi
Aip. Let Si j denote similarity coefficient between order i and order j , where Si j is size of set Ai

⋂
A j . In other

words, Si j refers to number of overlapping channels between order i and j . To be specific, order batching strategy using
similarity coefficient in terms of overlapping channels is named batching with overlapping channels (BOC), distinguished
from the FIFO strategy.

The main idea of BOC is to combine two similar orders as one which is regarded as a new order until picking equipment
is unable to fulfil a larger order in one trip. Batching process starts when certain quantity (denoted by N ) of orders are placed
waiting for fulfilment. These orders form an unprocessed order list. Two strategies can be applied in batching: static batching
and dynamic batching. Static batching generates orders into several batches without adding new orders to the list, while
dynamic batching replenish orders to maintain N orders in unprocessed list once a batch is composed. In static batching, the
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Figure 3. An example for local search process.

next order list is added only when the current order list is finished, which leads to relatively long waiting time for orders in
the system. Therefore dynamic batching will generate better performance.

However, in dynamic batching, orders with more SKUs tend to be batched together at first when applying similarity
coefficient by overlapping channels. In result, some orders of small size have to wait for a longer time. Hence, we adapt
channel overlapping rate with seed order to evaluate similarity. The order with most SKUs in the list is chosen as the seed
order. Other orders in the list are only compared to the seed order. Let Ai∗ be set of channels of seed order i∗, then the
overlapping rate of an order j is defined as:

Si∗ j = size of Ai∗
⋂

A j

size of A j
(13)

For instance, if order j has five channels, and three of them are also included by the seed order i∗, then the channel overlapping
rate Si∗ j is 60%. This indicates orders with less SKUs may have a higher overlapping rate, which benefits the balance of
workload.

Besides, a feasible s-shape picking route can be easily computed when a batch is decided because channels to be visited
are already known in the batching process. This picking route can be regarded as sequence of visiting channels included
in this batch from the nearest one to the farthest one. If the picking distance has to be further optimised using intelligent
optimisation algorithms, such a route can be an initial solution.

Based on discussion above, the dynamic batching process is presented as follows:

Step 4.1: Choose the order with the most SKUs as the seed order i∗;
Step 4.2: Calculate the similarity coefficient Si∗ j of other orders with order i∗, Si∗ j = −1 if combined order of i∗
and j exceeds the capacity constraint.
Step 4.3: If Si∗ j = −1 for every order j in the list, then go to Step 4.7, otherwise go to Step 4.4.
Step 4.4: Sort orders by Si∗ j in descending order;
Step 4.5: Select order (i∗, j) with the highest Si∗ j , if multiple orders have the same similarity coefficient, choose
the order j that arrives first;
Step 4.6: Combine order j and i∗ as a new order it , add order it back to the set of unprocessed orders. If the set
contains only order it then go to Step 4.7, otherwise go to Step 4.2;
Step 4.7: Output the order batch. Add new orders to the set of unprocessed orders in the sequence of arrival time,
ensure the set remains N orders and then go to Step 4.1.

The initial route has to be improved by intelligent optimisation algorithms. In the rest of this section, ant colony algorithm
(ACO) will be adapted. ACO tries to imitate the behaviour of a colony of ants when searching for food (Colorni, Dorigo, and
Maniezzo 1991). The ants release a substance called pheromone on the route they are searching to exchange information
with others so ants can judge a promising path by amount of pheromone. ACO has been adapted to solve TSP and relevant
problem with promising performance (Dorigm and Gambardella 1997).

We consider a combination of ACO and local search (ACOLS) by following process: each time when a feasible route is
constructed by an ant, we perform two local search processes in sequence on the solution, 2-opt reverse and relocate used in
Zhang et al. (2013). Both processes first uniformly choose two nodes X and Y in the route. In 2-opt reverse, sequence between
node X and node Y will be reversed. In relocate, node Y will be inserted before node X . New route will be compared to the
old one and the better one will be accepted. For each process, the terminal condition is that the route has not been improved
in 100 continuous iterations. Main idea of two local search processes is shown in Figure 3. These two local search processes
can search the neighbourhood and improve the solution. When two processes is finished and out the final route, pheromone
will be updated based on this route. Therefore, the whole algorithm of batching and picking is named BOC-ACOLS.
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Table 2. The setting of SKUs and orders.

Setting of SKUs Setting of orders

Type Ws AvgDs max Ds Ps Type Ro Sizeo Type Ro Sizeo

A 0.0030P 9 12 0.03 a 0.28I 2 g 0.05I 8
B 0.0097P 4 7 0.07 b 0.19I 3 h 0.04I 9
C 0.0400P 3 6 0.25 c 0.15I 4 i 0.01I 10
D 0.5800P 2 4 0.60 d 0.12I 5 j 0.006I 11
E 0.3673P 1 2 0.05 e 0.08I 6 k 0.004I 12
sum P – – 1 f 0.07I 7 sum I –

In next section, BOC-ACOLS will be compared to other algorithms to test efficiency. We mainly consider three algorithms.
The first one is a common batching and picking strategy applied in practice of warehouse operation including Yihaodian’s
warehouses: FIFO policy in batching and s-shaping heuristic (SS) in routing, shorten as FIFO-SS. As it is mentioned in
former part of this section, FIFO policy is to batch orders in the sequence of arriving time until the retrieval vehicle cannot
hold one more next orders. SS is to pick SKUs in a route shaped like an ‘S’, which is easy for a picker to understand and
execute. The second heuristic is sequential order batching and picking (SBP) proposed by Won and Olafsson (2005). It jointly
considers order picking time and order holding time in the batching process and uses the well-known 2-opt heuristic method
to calculate the picking route. The third one is a multi-GA method used by Tsai, Liou, and Huang (2008). GA is a widely used
evolutionary algorithm to solve different problems. The multi-GA uses two different GA in batching process and routing
process separately. All these algorithms will be tested in a numerical experiment presented in the next section.

5. Numerical experiment

In this section, some numerical results are presented to compare the efficiency of heuristics. These orders are simulated based
on the transaction data of Yihaodian, a famous online retailer in China mentioned above, by the following procedure:

Step 5.1: Divide all SKUs into S types (indexed by s). For a certain type s, there are four parameters: number of
SKUs in this type (referred as Ws), average demand in an order (referred as avgDs), maximum demand in an order
(referred as max Ds) and the possibility of appearance (referred as Ps).
Step 5.2: Set O order types, indexed by o. For a certain type o, there are two parameters: number of orders in this
type (referred as Ro) and number of SKUs it contains (referred as Sizeo). Order types are simply different in terms
of number of SKUs. In this example, the number of SKUs in an order varies from 2 to 12. Therefore O is set to be
11.
Step 5.3: For each order type o, draw Ro orders randomly from all I orders to form the order type o.
Step 5.4: For each order i , retrieve order type o and Sizeo of order i . For each SKU vacancy in Sizeo do:

Step 5.4.1: Decide the SKU type s using the probability Ps .
Step 5.4.2: Retrieve SKUs list of type s, choose a SKU p randomly from the list and add it to order o.
Step 5.4.3: If SKU p already exists in order i , then go back to Step 5.4.2.
Step 5.4.4: Generate a random demand quantity of SKU p in order i using average demand avgDs and
maximum demand max Ds . The demand quantity is assumed to follow a Poisson distribution in this paper.

Step 5.5: Output all the simulated orders.

In this numerical experiment, the SKU type is classified by sales for a few SKUs account for major sales. Note that the
performance of simulation improves as the number of SKU types increases. Detailed settings of parameters are shown in
Table 2. The data settings are based on sales data of Yihaodian in November 2013. Actually, the classification can be more
detailed with more advanced testing computer. All the notations for order simulation process is given in Table 3.

The simulated results are close to collected data, which are shown in Table 4. In Table 4, SKU is sorted by sales volume
in a descending order, and we evaluate the simulation results by calculating the proportion of aggregated sales volume from
the top δ% of SKU in two sets of orders, the real one and simulated one. Value of δ% is specified in the first row. As it is
mentioned above, the simulated data will be closer to the real one if SKUs are divided into more classes. In this section, we
only consider five classes due to the hardware constraint.
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Table 3. Notation of parameters in the order simulation.

Notation Description

S All the SKUs are divided into S types, indexed by s
Ws Number of SKUs in type s
AvgDs Average demand in an order for each SKU of type s
max Ds Maximum demand in an order for each SKU of type s
Ps Possibility of appearance of type s in an order
O All the orders are divided into O types, indexed by o
Ro Number of orders of type o
Sizeo Number of SKUs in a type o order

Table 4. Evaluation of the order simulation.

SKU 0.3 (%) 1 (%) 5 (%) 55 (%) 63 (%) 70 (%)

Real data 10.00 20.00 55.00 98.00 99.00 99.50
Simulated data 10.18 21.04 51.70 97.98 98.23 98.58

Table 5. Configurations of a typical warehouse.

Positions 2000 Bin size 1.2 m × 1.2 m
Columns 100 Middle aisle width 4.8 m
Rows 40 Side aisle width 1.2 m
Aisles 3 Channel width 1.2 m
Channels 11 Vehicle capacity V 50 units, 100 units
Horizontal speed v 0.25 m/s Vertical speed h 0.25 m/s

We consider the storage structure with a middle aisle, for example. It contains two identical zones connected by a middle
aisle. Each zone consists of 1000 positions (50 columns and 20 rows). Each position is specified for one SKU and assumes
that storage quantity of all the SKUs is enough to cover demand. Such a storage can be regarded as part of a whole warehouse
and it contains all typical components in the warehouse layout. The detail description of the storage structure is shown in
Table 5. In the numerical experiment, we consider the number of SKUs to be 2000. For simplification, the unit size of all
SKUs is assumed to be equal and therefore the capacity of the retrieval vehicle could be set to 50 units or 100 units for
different kinds of order setting. Orders are assumed to arrive chronologically at a speed of 900 orders per hour on average.
In practice, retailers could receive much more orders.

We consider two classes of computational tests. Class 1 is a test with various quantity of orders and Class 2 is a test
with various structures of orders. Class 1 is to examine the efficiency of algorithms under different problem size and Class
2 is to find whether the algorithms can deal with different demand structures. In Class 1, we test 200, 500, 1000, 5000 and
10,000 orders. In Class 2, number of orders is set to 5000, and four different order sets are given. These four order sets are
designed in two dimensions: demand of each SKU (referred as order demand) and the number of SKUs in an order (referred
as order size). Each dimension is divided into two levels: normal and large. In this experiment, for normal demand, the
settings of AvgDs and max Ds are consistent with the data in Table 2 while the large one doubles the demand. Analogously,
normal size means that Sizeo remains the same as the data in Table 2. In large size, we only consider orders with more than
5 SKUs. Division of demand is to simulate different situations in the B2C online retailing. Small demand may be accord
with comprehensive retailers, but as for a retailer mainly selling FMCG such as snacks, nut, milk, customer may prefer to
purchase more for two reasons: to reach the requirement of free shipping and customers do not need to carry goods home by
themselves so purchasing more may bring higher utility. Considering the order size, actually, small size is more often in the
online retailing. In this example, large size is mainly to test the efficiency of heuristics in some rare situations, e.g. November
11th, an online promotion day in China raised in recent years. Note that for orders in Class 2, the retrieval vehicle with a
capacity of 50 units may be not enough; therefore, we assume capacity V is upgraded to 100 units to handle such kind of
situation.

The setting of parameters for algorithms should be given before the experiment. For BOC-ACOLS, the size of unprocessed
order list N is set to be 50. Number of ants equals to the number of SKUs to be picked, relative influence parameters
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Table 6. Class 1: comparison under various quantity of orders (V = 50).

Order amount Algorithm Batch Utl(%) DT (m) Imp(%) Davg(m) Tavg(s)

200

BOC-ACOLS 46 94.22 7,826.4 – 170.14 70.04
FIFO-SS 51 84.98 45,096.0 82.65 884.24 –
SBP 52 83.35 56,114.4 86.05 1079.12 –
Multi-GA 60 72.23 46,934.4 83.32 782.24 9.28

500

BOC-ACOLS 108 96.74 19,665.6 – 182.09 65.77
FIFO-SS 120 87.07 111,547.2 82.37 929.56 –
SBP 122 85.64 142,104.0 86.16 1,164.79 –
Multi-GA 148 70.59 119,157.6 83.50 805.12 8.12

1000

BOC-ACOLS 335 94.64 59,100.0 – 176.42 70.91
FIFO-SS 377 84.10 335,738.4 82.40 890.55 –
SBP 379 83.65 425,774.4 86.12 1123.42 –
Multi-GA 450 70.45 358,816.8 83.53 797.37 10.58

5000

BOC-ACOLS 1,065 98.11 200,930.4 – 188.67 64.69
FIFO-SS 1197 87.29 1,132,908.0 82.26 946.46 –
SBP 1233 84.74 1,430,656.8 85.96 1160.31 –
Multi-GA 1451 72.01 1,198,024.8 83.23 825.65 8.89

10000

BOC-ACOLS 2,144 98.03 399,844.8 – 186.49 64.82
FIFO-SS 2,423 86.75 2,267,949.6 82.37 936.01 –
SBP 2,465 85.27 2,864,808.0 86.04 1,162.19 –
Multi-GA 2930 71.74 2,394,583.2 83.30 817.26 8.83

αACO = 1 and β = 5, the pheromone evaporation coefficient ρ = 0.5. Ant-cycle model is adapted to update the pheromone
and termination condition is not finding a better solution in 300 continuous iterations. Parameters of SBP mainly follows
that of Won and Olafsson (2005) where both picking factor �1 and holding factor �2 are equal to 1. The most important
parameter of SBP, the between batch time t , rangers from 5 to 30 min and t increases by 1 min each time. Note that we mainly
compare the length of picking route computed by different algorithms while SBP considers picking time and holding time of
orders. Therefore, results of SBP will be transferred into distance from time since speed of retrieval vehicle given in Table
5 is constant. Similar operations are done for multi-GA in Tsai, Liou, and Huang (2008). Besides, for multi-GA, number of
batches is decided by Equations (11) and (12) in Tsai, Liou, and Huang (2008) while the parameter R1 and R2 need to be set
by users. We let R1 = 1 and R2 = 1.5 based on some experiments. Each time multi-GA processes N = 50 orders which is
the same as BOC-ACOLS. All tests are completed on a computer with a 2.7-Ghz Intel Core i5 CPU and 8 GB RAM using
Matlab 2014b.

The result of Class 1 analysis is shown in Table 6. We use meter (m) to measure distance and second (s) to measure time.
The third column gives the amount of batches calculated by each algorithms. ‘Utl’ in the fourth column refers to average
utilisation of the retrieval vehicle by order batching. In the fifth column, DT means the total distance in picking all batches.
To compare efficiency of routing, ‘Imp’ in the sixth column calculates the percentage of distance improvement on the shortest
distance compared to that of others. Then Davg in the eighth column is the average picking distance of each order batch
and Tavg in the final column is the average time in computation for each batch including batching and routing. Since both
FIFO-SS and SBP are heuristics which finish computation in a very short time, we only compare the time efficiency between
BOC-ACOLS and multi-GA.

Data in Table 6 shows that BOC-ACOLS outperforms other algorithms in allocating orders into less batches and computing
a better route for each batch. Firstly, in order batching process, BOC-ACOLS divides orders into less batches compared to
others and therefore achieves a higher utilisation of capacity. Multi-GA always leads to the most batches and one possible
reason for it is that GA cannot converge to the optimal solution in many cases. As a result, its outcome may be even worse than
that of FIFO-SS. Considering the picker routing, BOC-ACOLS always computes a shorter picking route with an improvement
of more than 80%. FIFO-SS gets a higher efficiency than SBP mainly because SBP only adapts 2-opt heuristic in its routing.
Though multi-GA computes more batches than others, GA still has advantage in picker routing compared to FIFO-SS and
SBP.
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Table 7. Class 2: Comparison under different order structures (V = 100).

Order set Algorithm Batch Utl(%) DT (m) Imp(%) Davg(m) Tavg(s)

1
BOC-ACOLS 533 99.27 210,285.6 – 394.53 99.28
FIFO-SS 569 92.99 1,006,334.4 79.10 1,768.60 –

Normal demand SBP 585 90.44 1,371,892.8 84.67 2,345.12 –
Normal size Multi-GA 698 75.80 1,197,472.8 82.44 1715.58 4.26

2
BOC-ACOLS 804 97.23 320,798.4 – 399.00 101.63
FIFO-SS 849 92.08 1,515,410.4 78.83 1784.94 –

Normal demand SBP 858 91.11 2,064,626.4 84.46 2406.32 –
Large size Multi-GA 1058 73.89 1,805,275.2 82.23 1706.31 6.16

3
BOC-ACOLS 1090 97.67 198,513.6 – 182.12 66.34
FIFO-SS 1232 86.41 1,135,027.2 82.51 921.29 –

Double demand SBP 1238 85.99 1,427,940.0 86.10 1,153.42 –
Normal size Multi-GA 1478 72.03 1,193,128.8 83.36 807.26 8.14

4
BOC-ACOLS 1723 92.76 302,395.2 – 175.51 61.05
FIFO-SS 1919 83.29 1,701,847.2 82.23 886.84 –

Double demand SBP 1923 83.12 2,142,960.0 85.89 1,114.38 –
Large size Multi-GA 2247 70.29 1,797,580.8 83.18 799.99 13.07

Table 8. Comparison of CPU time for BOC-ACOLS and multi-GA to obtain the same routing distance.

Nodes GA-T ime (s) ACO-T imeavg (s) ACO-T imemin (s) ACO-T imemax (s)

10 0.0167 0.0049 0.0001 0.0301
30 0.0203 0.0134 0.0009 0.1099
50 0.0299 0.0523 0.0232 0.1401

Table 7 presents the results of Class 2 test. The meaning of columns is the same as those in Table 6 and we obtain similar
results. BOC-ACOLS is still the best among all algorithms from perspectives of both constructing less batches and finding a
shorter route. As for order batching, BOC-ACOLS still outputs less order batches than that of others, which will induce less
labour cost in order fulfilment. Besides, BOC-ACOLS can reduce the total picking distance by arranging similar orders into
one batch. The data in the seventh column may be more persuasive because the BOC-ACOLS still computes the shortest
distance for each batch. Utilisation is decreasing because both demanding units and order size is larger so it becomes more
difficult to find suitable orders to construct a batch. Routing distance decreases in the case of double demand mainly because
demanding units in an order increase so each batch contains less SKUs.

Although BOC-ACOLS is better than multi-GA in finding a shorter route, it also induces a longer computation time.
Note that major part of computation time is spent on routing. Therefore, an additional test to prove the time efficiency of
BOC-ACOLS is presented. In this test, we compare the time that BOC-ACOLS spent on finding a solution which is no
worse than that of multi-GA. Three different sizes of nodes are used: 10, 30 and 50 because these three sizes are common
problem sizes in the former tests. Firstly, a given size of nodes are selected uniformly from all P SKUs. Secondly, multi-GA
is run for 10 times to output 10 final picking routes. Then we choose the best solution and record its distance as GA-Dist
with corresponding computation time as GA-T ime. Thirdly, BOC-ACOLS is run for ten times. The terminal condition for
BOC-ACOLS is finding a solution that is no worse than GA-Dist . Then computation time of BOC-ACOLS is recorded.
The result is shown in Table 8. After this test, we run another similar experiment. In the second test, once CPU time exceeds
GA-T ime then BOC-ACOLS stops and outputs the current solution. Result of the second test is shown in Table 9.

In Tables 8 and 9, unit to measure time is second and unit to measure distance is meter (m). The results show that
BOC-ACOLS is more efficient than multi-GA in considering the time spent on finding the same qualified solution or the
quality of the solution obtained in the same computation time. In the first test, BOC-ACOLS spends more time than multi-GA
averagely when the number of nodes is large, and otherwise it is faster. In the second test, BOC-ACOLS obtains a shorter
average picker routing distance than that of multi-GA in all cases. Though the gap decreases as the problem size increases,
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Table 9. Comparison of picker routing distance obtained by BOC-ACOLS and multi-GA in the same time.

Nodes GA-Dist (m) ACO-Distavg (m) ACO-Distmin (m) ACO-Distmax (m)

10 142.7 81.2 24.6 158.7
30 389.3 283.8 184.7 480.7
50 486.0 456.7 438.7 764.3

Figure 4. Sensitivity analysis of N .

BOC-ACOLS still has impressive outcome. In real applications, terminal condition of BOC-ACOLS can be adjusted to cut
down the computation time only with a small reduction of solution quality.

Finally, note that the size of the unprocessed order list N has influence on the final picking distance and the order holding
time. In other words, larger N brings a shorter picking route but a longer order holding time which may affect the customer
satisfaction. A simple sensitivity analysis of N is given to explore how N affect the picking distance. Note that distribution
of order arrival time is difficult to estimate, and the order holding time is not considered in this analysis. Results of sensitivity
analysis are presented in Figure 4. Order set of normal size and normal demand with 5000 orders is used and the solution is
computed by BOC-ACOLS.

In Figure 4, N changes from 30 to 200 to ensure a fairly stable performance. The total picking distance first decreases
as N increases and then becomes stable when N reaches 150. When N is relatively small, more batches are generated
because utilisation of capacity is not maximised. When N increases, number of batches does not decrease due to the capacity
constraint. However, larger N may lead to longer order fulfilment time because the order has to wait for longer time after
it is placed by customers. Therefore, in practice, online retailers should make a trade-off between efficiency and customer
satisfaction. The sensitivity analysis presented in Figure 4 is based on a typical parameter setting used and results may change
as other parameters change such as the capacity of retrieval vehicle. Hence, more discussion about the decision of N will
not be pursued in the paper.

6. Conclusion

In this paper, a joint optimisation problem of order batching and picker routing in a warehouse of online retailers is investigated.
We purpose an integer formulation aiming to minimise the picking distance which reflects both operating cost and order
processing time to some extent. An effective algorithm using similarity coefficient by overlapping channels to batch orders
and composing picking route which is further optimised by the ant colony optimisation with local search is presented. A
numerical experiment based on actual sales data is given to test the efficiency of heuristics and results indicate that our
heuristic can shorten the order picking distance by optimising order batching and picker routing, generating orders into less
batches which reduce manpower spent on picking with even less workload for each batch.

In practice, problem size could be very large and is still increasing. Online retailing in China is growing at a high speed
and competition is becoming more furious. For example, the biggest online shopping day in China, known as ‘Double 11’
or China’s singles’ day, brought 57.1 billion Yuan (about 9.3 billion dollars) to Alibaba in a single day of 2014. Other online
retailers also followed and launched large promotion activities. Therefore, it has been a big challenge to improve efficiency of
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warehouse operations. The problem size has become so large that traditional heuristics cannot meet requirements. Intelligent
optimisation algorithms are then designed to solve this kind of problems but they usually take an unacceptable long time
to obtain a good solution. In this paper, our algorithm can balance quality of solution and computation time. Besides, we
consider the feasibility of algorithms by proposing a method to convert practical problems into formulation programs.

The computational example mainly implies that: (1) our algorithm can divide orders into less batches compared to
practically used heuristics, which could save labour cost; (2) our algorithm can find a shorter picking route than other
intelligent algorithms and practical heuristics, which will reduce order fulfilment time; (3) our algorithm could have higher
time efficiency compared to other intelligent algorithms and computation time can be cut down without loss of solution
quality; (4) decision-makers have to make a trade-off between cost and order fulfilment time by deciding number of waiting
orders in WMS. Our work has been implemented in Yihaodian with positive feedback. For a typical online retailer in China,
human labour will be prevailing in the foreseeable future due to low labour cost. Therefore optimisation in warehouse
operations to save cost with realisation of such a fact should be a research focus.

With realisation of works in the paper, our research can be extended in the following ways: (1) combine the optimisation
of warehouse layout and storage location allocation for a new warehouse; (2) in practical warehouse operations, the channel
is usually narrow and congestion must be considered in batching orders; (3) when an effective algorithm is found to compute
the picking route, then it demands how to balance the total picking distance among different batches for convenience of
personnel performance evaluation.
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